THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Suggested solutions to homework 5

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

7.17. Let X be an inner product space and E a nonempty subset of X. Show that

$$
E^{\perp} = \bigcap_{x \in E} \{x\}^{\perp}.
$$

Proof. For any $z \in E^{\perp}$, we have $\langle z, x \rangle = 0, \forall x \in E$, which implies that $z \in \{x\}^{\perp}$. Therefore,

$$
E^{\perp} \subset \bigcap_{x \in E} \{x\}^{\perp}.
$$

On the other hand, for any $y \in \bigcap \{x\}^{\perp}$, we have $y \in \{x\}^{\perp}$, $\forall x \in E$. It follows that $\langle y, x \rangle =$ x∈E $0, \forall x \in E$ and consequently $y \in E^{\perp}$. As a result, \bigcap x∈E $\{x\}^{\perp} \subset E^{\perp}.$

7.18. (a) Prove that for every two subspaces X_1 and X_2 of a Hilbert space,

$$
(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}.
$$

(b) Prove that for every two closed subspaces X_1 and X_2 of a Hilbert space,

$$
(X_1 \cap X_2)^{\perp} = \overline{X_1^{\perp} + X_2^{\perp}}.
$$

Proof. (a) First note that if $W \subset V$ then $V^{\perp} \subset W^{\perp}$. Now $X_1, X_2 \subset X_1 + X_2$ and so we have

$$
(X_1 + X_2)^{\perp} \subset X_1^{\perp}, \quad (X_1 + X_2)^{\perp} \subset X_2^{\perp} \Longrightarrow (X_1 + X_2)^{\perp} \subset X_1^{\perp} \cap X_2^{\perp}.
$$

Now we need to show the other way of inclusion. Let $x \in X_1^{\perp} \cap X_2^{\perp}$ and z be an arbitrary vector in $X_1 + X_2$. Then we can write $z = x_1 + x_2$, $x_1 \in X_1$, $x_2 \in X_2$ and $\langle x, z \rangle = \langle x, x_1 \rangle + \langle x, x_2 \rangle = 0$. This follows because x is in both X_1^{\perp} and X_2^{\perp} . Therefore, $x \in (X_1 + X_2)^{\perp}$ and

$$
X_1^{\perp} \cap X_2^{\perp} \subset (X_1 + X_2)^{\perp}.
$$

And we are done.

(b) Since X_1 and X_2 are closed, from (a) we have

$$
(\overline{X_1^{\perp} + X_2^{\perp}})^{\perp} = (X_1^{\perp} + X_2^{\perp})^{\perp} = X_1^{\perp \perp} \cap X_2^{\perp \perp} = X_1 \cap X_2.
$$

Therefore,

$$
(X_1 \cap X_2)^\perp = (\overline{X_1^\perp + X_2^\perp})^{\perp \perp} = \overline{X_1^\perp + X_2^\perp}
$$

where the last identity is from the closedness of $X_1^{\perp} + X_2^{\perp}$.

7.26. Let (e_k) be an orthonormal sequence in an inner product space X. Prove that

$$
\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \le ||x|| ||y||,
$$

for all $x, y \in X$.

Proof. From the Cauchy-Schwarz inequality and Bessel's inequality, we have

$$
\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \leq \left(\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} |\langle y, e_k \rangle|^2\right)^{\frac{1}{2}} \leq ||x|| ||y||.
$$